Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

13 Applications of Differentiability

Definition 1 (minimum/maximum point). Let $f: M \to \mathbb{R}$, where $M \subset \mathbb{R}^n$. Then $x_0 \in M$ is a

- (*i*) local minimum [maximum] point *if there exists a suitable* $\delta > 0$ *such that* $f(x_0) \le f(x)$ [$\ge f(x)$] for all $x \in M$ with $|x_0 x| < \delta$;
- (*ii*) global minimum [maximum] point *if* $f(x_0) \le f(x)$ [$\ge f(x)$] for all $x \in M$.

Theorem 2. Let $f: (a,b) \to \mathbb{R}$ be differentiable. If $x_0 \in (a,b)$ is a local minimum or maximum point, then $f'(x_0) = 0$.

Theorem 3 (Extremal Test). Let $f: (a, b) \to \mathbb{R}$ be 2 times differentiable and $x_0 \in (a, b)$ with $f'(x_0)$.

 $f''(x_0) > 0 \implies x_0 \text{ is a local minimum}$ $f''(x_0) < 0 \implies x_0 \text{ is a local maximum}$

Definition 4. Let $f: (a, b) \to \mathbb{R}$ be differentiable. A point x_0 is an inflection point if

$$f''(x_0) = 0$$

 $f'''(x_0) \neq 0.$

Theorem 5 (higher order derivative test). Let $f : [a, b] \to \mathbb{R}$ be *n*-times differentiable on (a, b) for some $n \in \mathbb{N}$. Let $x_0 \in (a, b)$ such that

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

and $f^{(n)}(x_0) \neq 0$.

- (i) If n is even and $f^{(n)}(x_0) < 0$ [> 0], then x_0 is a local maximum [minimum] point.
- (*ii*) If *n* is odd, then x_0 is an inflection point.

Theorem 6 (ROLLE's theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). If f(a) = f(b), then there exists $\xi \in (a, b)$ with $f'(\xi) = 0$.

Corollary 7 (Mean Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). Then there exists $\xi \in (a, b)$ with

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 8. If $f: (a,b) \to \mathbb{R}$ is differentiable with f'(x) = 0 for all $x \in (a,b)$, then f is constant.

Theorem 9. If $f: (a, b) \to \mathbb{R}$ is differentiable, then

- (i) f is [strictly] increasing if and only if $f'(x) \ge 0$ [> 0] for all $x \in (a, b)$;
- (ii) f is [strictly] decreasing if and only if $f'(x) \le 0$ [< 0] for all $x \in (a, b)$.

Theorem 10. Let $f: [a,b] \to \mathbb{R}$ and $x_0 \in [a,b]$. If f is decreasing [increasing] in $(x_0 - \delta, x_0] \cap [a,b]$ and increasing [decreasing] in $[x_0, x_0 + \delta) \cap [a,b]$ for some $\delta > 0$, then x_0 is a local minimum [maximum] point.

Theorem 11 (DE L'HOSPITAL'S Theorem). Let $f, g: (a, b) \to \mathbb{R}$ be differentiable and $x_0 \in [a, b]$. Let either

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

or

$$\left|\lim_{x\to x_0} f(x)\right| = \left|\lim_{x\to x_0} g(x)\right| = \infty.$$

If

$$\lim_{x\to x_0}\frac{f'(x)}{g'(x)}\to y\in\mathbb{R},$$

then

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}\to y\in\mathbb{R}.$$

(An analogue holds for the case that ' $x_0 = \pm \infty$ '.)

Definition 12 (TAYLOR polynomial). Let $f: D \to \mathbb{R}$ be *n* times differentiable, where $D \subset \mathbb{R}$ and $n \in \mathbb{N}$. For $x_0 \in D$, the Taylor polynomial of f of degree n at x_0 is defined as

$$T_{x_0}^n(f)(x) = T_{x_0}^n f(x)$$

= $\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$
= $f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$

Definition 13 (TAYLOR series). If $f: D \to \mathbb{R}$, where $D \subset \mathbb{R}$, is an indefinitely differentiable function and $x_0 \in D$, then

$$T_{x_0}^{\infty}f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

is the TAYLOR series of f at x_0 .

Theorem 14 (TAYLOR's theorem). Let $f: D \to \mathbb{R}$ be *n* times differentiable, where $D \subset \mathbb{R}$ and $n \in \mathbb{N}$. If $x_0 \in D$, then

$$f(x) = T_{x_0}^n f(x) + R_{x_0}^{n+1} f(x)$$

with

$$R_{x_0}^{n+1}f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$

for a number ξ between x and x_0 , i.e.

$$\xi \in egin{cases} [x,x_0] & \textit{if } x < x_0 \ [x_0,x] & \textit{if } x > x_0 \end{cases}.$$

The summand $R_{x_0}^{n+1}f(x)$ *is called* error or remainder term.